新闻

物理所层状氮化物中电场诱导的稳态超导电性研

作者:亚博下载 发布时间:2021-02-22 05:44 点击数:

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年招收攻读博士学位研究生报名公告

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年接收“推免生”章程

  2020年南昌大学-中国科学院稀土研究院“稀土专项”联合培养博士研究生“申请-考核”制招生公告

  近年来,利用离子液体作为电介质进行电场调控物性的研究引起了凝聚态物理领域的极大关注,其中电荷双层三极管成为一种典型的电场调控工具。通过改变栅极电压的方向和大小,相应类型的载流子能够在纳米级厚度的样品表面聚集,进而改变样品表面附近的物理属性。因此,具有干净且平整表面的层状化合物往往是此类研究的对象。但是,此类电场诱发物性的最重要特点是,一旦在电介质的液体状态下释放栅极电压,这类电荷双层诱导的局域物性将会迅速消失,从而限制了对诱发物性进行更深入和更全面的机制研究。

  最近,中国科学院物理研究所/北京凝聚态物理国家研究中心超导国家重点实验室SC10组副研究员张帅和博士生高默然、王欣敏,硕士联培生傅焕俨在课题组长陈根富的指导下,在层状氮化物MNCl (M: Hf, Zr)的电场调控研究中取得新进展,实现了电场诱导的永久超导电性,并对其机制进行了全面和深入的研究。电场诱发的部分Cl离子空位会对体系产生电子掺杂,并最终形成不可逆的稳态超导转变。这为在具有类似结构的低维化合物中探索和研究超导电性提供了新的实验思路和视野。

  张帅与学生们共同设计了一种易于操作的电场调控方法,并用该方法对母体为绝缘体的层状氮化物MNCl (M: Hf, Zr)进行了详细的电场调控实验。研究发现,在较低温度(220 K)进行电场调控时,随温度变化的电阻R(T)中观察到电场诱导的绝缘体-超导转变,Tc在24和15 K附近。在施加反向栅极电压或者长时间的无电压弛豫之后,R(T)能再次恢复到与母体相似的绝缘体状态,这和传统的电荷双层超导态一致。与此相对,在较高温度(250 K)进行电场调控时,诱发的超导状态不再被反向栅极电压或者长时间的无电压弛豫所破坏,而永久停留在样品内部。用来测试R(T)的单晶样品在随后的磁性M(T)测量中也在相应温度确认了超导状态引起的抗磁性信号,直接证明了此超导电性的永久属性。同样的电场调控方法被成功推广到大尺寸的单晶和多晶样品中。

  常规的电场调控中,电场诱发的离子插层效果在施加相反方向的栅极电压时会出现相反结果。因此,R(T)中不可逆的绝缘体-超导转变已经排除了电场诱发离子插层的可能性。相同的栅极电压在不同温度下产生了可逆和不可逆两种截然不同的实验结果,暗示了温度在利用离子液体进行电场调控时的重要作用。离子液体的电化学窗口是随着温度的升高而减小的。在较高温度(250 K)施加接近离子液体电化学窗口的栅极电压会诱导样品表面产生不可逆的化学反应。结合实验中观察到的永久超导电性,研究人员认为不可逆的绝缘体-超导转变源自于电场调控诱发部分Cl离子空位的形成,从而导致对体系的永久性的电子注入。类似的绝缘体-金属转变现象在VO2的研究中曾经有所报道。

  稳定持久的超导状态为更详尽的物性实验提供了研究对象。该工作中发现的电场效应和电化学机制,克服了传统电荷双层三极管的一些限制,拓展了通过离子液体进行电场调控物性的功能,在相似低维材料中探索新型超导体方面显示了巨大潜力。

  图3. 在220K和250 K进行正反电场调控及Cl离子空位形成的概念模型。

  近年来,利用离子液体作为电介质进行电场调控物性的研究引起了凝聚态物理领域的极大关注,其中电荷双层三极管成为一种典型的电场调控工具。通过改变栅极电压的方向和大小,相应类型的载流子能够在纳米级厚度的样品表面聚集,进而改变样品表面附近的物理属性。因此,具有干净且平整表面的层状化合物往往是此类研究的对象。但是,此类电场诱发物性的最重要特点是,一旦在电介质的液体状态下释放栅极电压,这类电荷双层诱导的局域物性将会迅速消失,从而限制了对诱发物性进行更深入和更全面的机制研究。

  最近,中国科学院物理研究所/北京凝聚态物理国家研究中心超导国家重点实验室SC10组副研究员张帅和博士生高默然、王欣敏,硕士联培生傅焕俨在课题组长陈根富的指导下,在层状氮化物MNCl (M: Hf, Zr)的电场调控研究中取得新进展,实现了电场诱导的永久超导电性,并对其机制进行了全面和深入的研究。电场诱发的部分Cl离子空位会对体系产生电子掺杂,并最终形成不可逆的稳态超导转变。这为在具有类似结构的低维化合物中探索和研究超导电性提供了新的实验思路和视野。

  张帅与学生们共同设计了一种易于操作的电场调控方法,并用该方法对母体为绝缘体的层状氮化物MNCl (M: Hf, Zr)进行了详细的电场调控实验。研究发现,在较低温度(220 K)进行电场调控时,随温度变化的电阻R(T)中观察到电场诱导的绝缘体-超导转变,Tc在24和15 K附近。在施加反向栅极电压或者长时间的无电压弛豫之后,R(T)能再次恢复到与母体相似的绝缘体状态,这和传统的电荷双层超导态一致。与此相对,在较高温度(250 K)进行电场调控时,诱发的超导状态不再被反向栅极电压或者长时间的无电压弛豫所破坏,而永久停留在样品内部。用来测试R(T)的单晶样品在随后的磁性M(T)测量中也在相应温度确认了超导状态引起的抗磁性信号,直接证明了此超导电性的永久属性。同样的电场调控方法被成功推广到大尺寸的单晶和多晶样品中。

  常规的电场调控中,电场诱发的离子插层效果在施加相反方向的栅极电压时会出现相反结果。因此,R(T)中不可逆的绝缘体-超导转变已经排除了电场诱发离子插层的可能性。相同的栅极电压在不同温度下产生了可逆和不可逆两种截然不同的实验结果,暗示了温度在利用离子液体进行电场调控时的重要作用。离子液体的电化学窗口是随着温度的升高而减小的。在较高温度(250 K)施加接近离子液体电化学窗口的栅极电压会诱导样品表面产生不可逆的化学反应。结合实验中观察到的永久超导电性,研究人员认为不可逆的绝缘体-超导转变源自于电场调控诱发部分Cl离子空位的形成,从而导致对体系的永久性的电子注入。类似的绝缘体-金属转变现象在VO2的研究中曾经有所报道。

  稳定持久的超导状态为更详尽的物性实验提供了研究对象。该工作中发现的电场效应和电化学机制,克服了传统电荷双层三极管的一些限制,拓展了通过离子液体进行电场调控物性的功能,在相似低维材料中探索新型超导体方面显示了巨大潜力。

  上述研究结果作为Express Letter发表于Chin. Phys. Lett. 35 097401(2018)。该研究工作得到国家自然科学基金(11704403)、国家重点研发计划(2016YFA0401000, 2016YFA0300604)、中科院B类先导(XDB07020100)等的支持。

  图3. 在220K和250 K进行正反电场调控及Cl离子空位形成的概念模型。


亚博下载

@SHENZHEN ENERGY Corporation All Rights Reserved.

亚博下载